

MANIFESTO OF STUDIES A.Y. 2020-2021

EDUCATIONAL ACTIVITIES

	1st YEAR - MANDATORY COURSES -									
	Course	Teacher	Hours	ECTS	Synopsis	Evaluation procedure				
1	Laboratory Safety Course	Prof. Alessandro Provenzani and Ines Mancini (CIBIO)	12	3	General Laboratory Procedures, Equipment Use, and Safety Considerations. The course consists of lectures and hands-on activities and provides training in chemical manipulation, laboratory activity, biology hazard, fire, and radiation safety.	Biology part: written exam. Chemical part: written exam.				
2	Laboratory Techniques	Various	6	1	Procedure relative to the PhD project.	Approval by the tutor				

	2nd YEAR - MANDATORY COURSES -								
	Course	Teacher	Hours	ECTS	Synopsis	Evaluation procedure			
1	Scientific Publishing & Communication	Ralph Dahm (IMB Mainz) Marie-Laure Baudet (CIBIO)	20	4	 To be successful, scientists need to raise funding for their projects and effectively communicate their science. No career can be built without writing successful grant applications or publishing high-impact papers, presenting attractive posters and giving compelling talks. It is therefore essential that scientists learn early on in their careers how best to present their data and ideas in different contexts. This course explains the fundamentals of science communication and fundraising, including: The basic principles of good communication How to prepare and deliver captivating scientific talks How to write clear and convincing scientific texts, incl. papers and grant/fellowship applications 				

	How to compile a compelling job application
	 This course will comprise: Introductory lectures on the topics outlined above Practical sessions during which: participating students present their projects (in talks or on posters), grant proposals and job applications, and the tutors and other participants give feedback on a student's presentation/other materials.

	BIOMOLECULAR CURRICULUM OPTIONAL COURSES								
	Course	Teacher	Hours	ECTS	Synopsis	Evaluation procedure			
	Biostatistics Module 1	Prof. Claudio	6	1	Module 1: Introduction to Statistical Inference Review of statistical inference: point estimation, confidence intervals, hypothesis testing and p-value using the likelihood approach. The module includes one computer session based on R.	Weekly homework			
1	Module 2	Agostinelli (Dept. Mathematics)	12	2	Module 2: Statistical Principles of Clinical Trials Overview of clinical trials. Treatment comparisons in clinical trials: without and with covariates. Topics in: Time-to-Event Endpoints, Longitudinal Analysis, Design of Experiments, Sample Size Determination and Power Calculations. The module includes several computer sessions based on R.	Weekly homework			
2	Bioinformatics Module 1: Machine learning techniques for classification and regression tasks in bioinformatics	Prof. Enrico Blanzieri (ICT)	8	1	The module will cover data and nature of the tasks, local, max- margin, and neural techniques for solving them. We will also illustrate examples from SVMs for RNA-protein binding prediction to the recent applications of deep learning to protein function classification.	Students will be required to review a paper on the topics discussed during the lessons.			

	Module 2: Artificial intelligence techniques for the analysis and interpretation of single cell and spatial sequencing data	Dr. Toma Tebaldi (Yale University)	12	2	Thanks to the revolution of single cell sequencing, today we can obtain genomic and transcriptomic sequencing data from single cells. By looking at thousands of cells one at a time, we can see which set of genes each individual cell is transcribing, and we can capture the cellular diversity of human tissues with unprecedented resolution. Single cell data analysis requires the development of appropriate methods, for example for cell type identification and inference of gene regulatory networks. We will present, discuss and test some of the available techniques addressing the analysis of single cell and spatial sequencing data.	Presentation and critical discussion of an assigned paper.
3	Molecular Spectroscopic Techniques	Prof. Graziano Guella (Dept. Physics)	12	3	The lessons include principles and applications of molecular spectroscopy for the elucidation of bioorganic structures and binding phenomena. Main emphasis will be on modern applications of Nuclear Magnetic Resonance and Mass Spectrometry in biochemical contexts but fundamentals of electronic and vibrational spectroscopy will be also presented.	Individual reports and discussion on an assigned topic
4	RNA Molecular Biology and Biotechnology	Prof. Michela A. Denti (CIBIO)	12	3	The course aims to familiarize the students with cutting-edge new discoveries in the field of RNA biology, and we expect the students to be familiar with the major topics of RNA-based regulation by the conclusion of the course. Topics will include: RNA secondary and tertiary structure; small and large ribozymes; riboswitches; Post-transcriptional gene silencing and RNA interference; RNA splicing modulating therapies; non-coding RNAs.	Presentation of cutting- edge papers, suggested by the teacher and presented by a 30 min journal club by the student.
5	Introduction to metagenomics	Prof. Nicola Segata (CIBIO)	12	3	The course will present the state-of-the-art metagenomic approaches for studying the microbial communities (microbiomes) populating the human body and the environment, and will describe the main recent microbial ecology findings, with a focus on those related to human diseases. On the methodological viewpoint, we will present metagenomic tools based on microarray chips, 16S rRNA sequencing surveys, and shotgun high-throughput sequencing from both the experimental and technological viewpoints. An overview of the challenges and solutions for computationally analyzing metagenomic data will be presented including methods for taxonomic characterization, functional profiling, genome assembly, phylogenetic inference of microbiomes. Advanced sequencing-based approaches for pathogen detection and characterization will also be presented. Recent findings about the relation between human associated microbial communities and complex diseases will be discussed as well as the mechanisms of vertical microbiome transmission (e.g. from mother to neonate) and gut microbial colonization.	Presentation and critical discussion of a paper (during the last 2-hours lecture)

6	Chemical modifications and organic synthesis of biomolecules	Prof. Ines Mancini (Dept. Physics)	12	3	The course will focus on the core principles of synthetic strategy and methodology, with the discussion of recently published topics in the field. Strategies in total synthesis: conversion of functional groups, carbon-carbon reactions, application of organometallic reagents. New methodologies: solvent role and choice, solid supported synthesis, microwave irradiation and other eco-friendly techniques. Asymmetric synthesis: stereoselectivity and introduction of new desired elements of chirality. Asymmetric and bio- catalysis using enzymes and chiral natural molecules. Design and synthesis in modern drug discovery: combinatorial and biomimetic approaches. Click chemistry. Synthesis and characterization of supra-molecular systems. At the request of the student, detailed topics related to his/her PhD research activities can be taken into account.	Individual presentation and critical discussion of an assigned paper or of a selected topic
7	Origins of Life	Prof. Sheref S. Mansy (CIBIO)	12	3	In the same year that the Watson-Crick DNA structure was published, another important discover was made. The graduate student Stanley Miller recreated in the laboratory the conditions that he thought best represented that of the early Earth, which included the small, simple molecules water, methane, ammonia, and hydrogen plus simulated evaporative and precipitation processes along with lightning. Miller's experiment revealed that amino acids, one of the key building blocks of life as we know it, naturally emerged from mixtures of simple molecules. Since that time, the field has progressed tremendously. We now have prebiotically plausible pathways for the generation of nucleotides, lipids, and even the formation of protocellular structure. There are still many gaps in our knowledge, but biologists, geologists, chemists, and astronomers are all working to find how life began here on the Earth and how life could emerge elsewhere. Historical and recent research papers will be discussed covering the first genetic polymers, what constitutes a living system, and how (proto)metabolism drives the maintenance of a cell.	Participation and a journal article presentation
8	Getting started with R and RStudio: a hands- on introduction	Dr. Pietro Franceschi (Edmund Mach Foundation)	12	3	R is a free software environment, designed for statistical computing which has become a standard for the advanced analysis of biological data. The objective of the course is to provide a "hands-on" introduction to R and RStudio, which will allow the students to 1) familiarize with the environment; 2) load and inspect data spreadsheets; 3) perform basic "data carpentry" operations; 4) visualize the data Due to the "hands on" nature of the course, students are encouraged to bring their own laptop	Practical Sessions

UNIVERSITÀ DI TRENTO DI TRENTO

10	Applied Statistics for High-Throughput Biology	Dr. Levi Waldron (City University of New York School Graduate of Public Health and Health Policy)	12	3	 encouraged to bring their own data to discuss and (possibly) analyse them. Basic knowledge on using R or Python is required. This course provides biologists and bioinformaticians with practical statistical and data analysis skills to perform rigorous analysis of high-throughput biological data. It covers essential statistical concepts behind the design of experiments and analysis of high-dimensional data generated by genomic technologies, including: sampling theory, linear modeling and confidence intervals, hypothesis testing, analysis of categorical variables, and methods of resampling (Monte Carlo, permutation tests, and bootstrap). The course assumes some familiarity with genomics, but does not have formal pre-requisites. Some prior exposure to the R statistical programming language, such as provided by the datacamp.com introductory course, will be very beneficial. Topics Introduction introduction to R random variables distributions populations and samples 	Evaluation will be based on: • Completion of laboratory exercises due at the starts of sessions 2 and 3 (40%) • A data analysis project assigned in session 3 and due one week after the final lecture (60%)
9	Data Exploration	Dr. Pietro Franceschi (Edmund Mach Foundation)	12	3	 Being able to explore, visualize and interpret complex data is becoming more and more important in biology. With "omic" technologies it is now possible to measure thousands of variables on hundreds of samples, but "big" data can be also produced by many other platforms used to characterize biological samples. The course will focus on data exploration and visualization, introducing some of the bioinformatical and biostatistical tools/concepts which can be used to explore a multidimensional dataset (PCA, Clustering, Linear Modeling,). The aim is to highlight the advantages and limitations of each approach. During the course the different aspects will be illustrated by live R sessions on publicly available datasets. The students will be also 	Final test

					 Linear modeling model matrix and model formulae Hypothesis tests for categorical variables (chi-square, Fisher's Exact Test) Resampling-based statistical methods Monte Carlo simulation permutation tests bootstrap simulation 	
11	Developmental Biology. Mini series of talks	Marie-Laure Baudet Paola Bellosta Yuri Bozzi Matthias Carl Simona Casarosa Lucia Poggi (CIBIO)	12	3	It is not birth, marriage or death, but gastrulation which is truly the most important time in your life" (L. Wolpert). Developmental biologists investigate how morphogenetic, signaling, and proliferation/differentiation processes are coordinated during embryogenesis to facilitate the generation of a fully functional animal from a single fertilized egg. This knowledge is central to understand the complex pathophysiology of diseases that are frequently caused by developmental defects. This mini series of seminars/lectures aims at providing a contemporary view on fundamental developmental processes, from the growth control of organs such as the eye and brain and the emergence of neurons and neuronal connectivity within, to the processes leading to aging, and aspects of cognitive neuroscience. The lectures include state-of-the-art research at CIBIO involving animal models commonly used for developmental studies. In particular, the latter will help attending students to re-evaluate the great potential of the Institute for collaborative research activities invaluable for their own research. Each lecture will be accompanied by papers sent in advance to the students to facilitate and promote discussion	Presentations of selected papers by the students.
12	Genomic and proteomic biomarkers: from target discovery to drug development applications	Prof. Enrico Domenici (CIBIO)	12	3	The objective of the course is to introduce the concept of biomarkers, with a particular emphasis on disease and clinical response biomarkers, and their applications in the identification of novel therapeutic targets and patient stratification strategies. A number of examples of genome- or proteome wide- approaches for biomarker discovery and validation will be provided and their potential impact in drug discovery will be highlighted. A special focus will be given to translational neuroscience biomarkers and their promise to personalized therapies. Biomarkers and Translational approaches • definition and field of applications • biomarker needs in neuroscience	The evaluation will be based on small group journal clubs focusing on specific biomarker topics, where each student will be assessed for group and individual effort.

					 Biomarker investigations by expression analysis genomics, proteomics and metabolomics approaches in biological fluids examples from neurodegenerative and neuropsychiatry disorders Genetic biomarkers from GWAS to patient stratification strategies 	
13	Exploring gene evolution using phylogenetics and phylogenomics	Dr. Omar Rota- Stabelli (Edmund Mach Foundation)	12	3	Evolution can deepen our understanding of biological processes by revealing how things come to be the way we currently observe them. Useful evolutionary tools are those based on phylogenetic trees: they aim at understanding how genes evolved in different species and can provide important clues for understanding the molecular bases of organism biology. This introductory course will provide the theoretical and practical bases of some tree-based methods using human and Drosophila as main model organisms. Course is divided in three lessons: 1) Introduction to molecular phylogenetics from sequence alignment to Bayesian inference with a particular emphasis on gene phylogenies (4 hours); 2) A focus on phylogenomics, the study of how genes evolve in different genomes, with particular emphasis in detecting gene family expansion/contraction and sign of selection in the species of interest (4 hours); 3) A journal club where students present and discuss with the others a paper chosen form the literature (4 hours).	Attendance to all lessons and positive evaluation of the presentation.
14	Exploring Biodiversity using DNA-barcoding and molecular clocks.	Dr. Omar Rota- Stabelli (Edmund Mach Foundation)	12	3	 A combination of lectures and practicals using phylogenetic methods to explore the diversity within ecosystems and understand how species (or varieties/strains) of bacteria, viruses, insects, plants and fungi have evolved through time. The course is organised in 3 lessons: 1. Introduction to molecular phylogenetics with a particular emphasis on species phylogenies and DNA barcoding (4 hours); 2. A focus on estimating divergence times of organisms using molecular clocks and on how to use this technique for paleobiological and paleoecological reconstructions (4 hours); 3. A journal club where students present and discuss a paper chosen form the literature on either barcoding or molecular clocks (4 hours). Skills acquired: practical tools for studying the evolution and diversification of species (molecular phylogenetics, DNA barcoding, estimates of divergence times using molecular clocks); skills in presenting and discussing scientific articles on biodiversity 	Attendance to all lessons and positive evaluation of the presentation. The course will take place at C3A – San Michele

15	Using ancient DNA to illuminate the evolutionary history of human infectious diseases	Maixner Frank (EURAC)	12	3	Modern bioarcheological analysis of ancient human remains support classical archaeological and anthropological studies with the analysis of a whole spectrum of possible biomolecules (ancient DNA, proteins, metabolites, lipids). These modern analyses provide precious additional information on skeletal and mummified human remains such as details on the molecular sex, kinship, genetic origin, diet, disease state and infection. Especially the molecular analysis of pathogens in ancient human skeletons and mummies is an emerging scientific field that can provide deep insights into the history and development of infectious diseases. The era of high-throughput sequencing has resulted in the reconstruction of complete ancient genomes of e.g. the causative agent of plague Yersinia pestis or of the stomach pathogen Helicobacter pylori of the famous mummy lceman. Especially the multidisciplinary approach combining molecular data with the archaeological context gives us the unique opportunity to infer the occurrence and the epidemic spread of these re-emerging diseases in various time periods. The course will outline the possibilities but also the limits of DNA analysis in ancient human remains by teaching the interdisciplinary research methods currently used in the still relatively young field of paleomicrobiology. Thereby case studies will provide insights into the evolution of pathogens summarizing the history of various scourges of mankind (plague, tuberculosis, leprosy).	The course days will be divided in an introductory lecture (1,5h) and a subsequent literature seminar (1,5) held by the students. In the literature seminar the students will summarize the most recent methodological advancements in the field of ancient DNA and will provide a summary of the most important publications linked to the molecular analysis of ancient pathogens. The quality of the presentation will be graded.
16	Advanced imaging approaches in Biomedicine	Alessio Zippo (CIBIO)	12	3	Most important advances in biotechnology and medicine are occurring at the intersection between biology, physics, computer science, and engineering. The course will provide the broad knowledge of the most advance advanced imaging methodology and their applications in biomedical science to compete in this interdisciplinary environment. The program will emphasize concepts and problem-solving attitude over memorization. The student will be exposed to innovative approaches such as super-resolution microscopy, single molecule tracking and optogenetics. We will discuss the advantages of applying molecular biophysical methodologies to address specific biological questions, including macromolecule dynamics. An overview of the challenges and solutions related to quantitative analyses of imaging data will be presented.	Presentation and critical discussion of a paper (during the last 2-hours lecture)

UNIVERSITÀ DI TRENTO DI TRENTO

17	Neural Stem cell	Luciano Conti (CIBIO)	12	3	The course's aim is to introduce the students to biological properties of neural stem cells and their exploitation for basic and translational applications. Different populations of developmental stage-specific neural stem cell populations will be presented, together with their isolation from mammalian neural tissue. Main emphasis will be devoted to in vitro neural stem cells systems generated starting from pluripotent stem cell.	Presentation and critical discussion of a paper (during the last 2-hours lecture)
18	Epigenetics mechanisms and their role during Cell Differentiation and transformation, Metabolism, Neuronal diseases	Marta Biagioli Fulvio Chiacchiera (CIBIO)	12+6	4	 When the human genome project was completed it was immediately evident that DNA sequence was not the only matter, but a crucial point was, how are the genes turned on and off to preserve cell identity? The answer is epigenetics, heritable changes in gene expression not caused by changes in the DNA sequence. Of relevance, differently from genetic mutations, epigenetic signatures are reversible and specific enzymes endowed with writer, reader and eraser abilities have been identified. The fundamental role of this class of enzyme has been readily investigated for clinically relevant applications and several "epi-drugs", able to influence DNA or histone modifications, are currently in clinical trials. But what is epigenetics? The students will revise the molecular structure of chromatin and nucleosomes packaging. They will then familiarize with the most common DNA and histone modifications [5mC and 5hmC, H3K27me3, H3K4me3/2/1, H3K36me3], expression of chromatin-linked noncoding RNAs as well as the usage of different histone variants, evaluating their regulatory role in genomic organization, transcriptional activation, elongation and repression during the normal physiology of the cell. The course will then move to describe 6 different applications of Epigenetics Control, through a series of research seminars by different investigators: NeuroEpigenetics Marta Biagioli – Alessio Zippo (CIBIO) [2h] Cancer Epigenetics Fulvio Chiacchiera – Alessio Zippo - Francesco Ferrari (CIBIO IFOM) [2h] Developmental and Metabolism Epigenetics Chiara Mozzetta - Alessandro Carrer (CNR, VIM) [2h] 	Students will be asked to prepare a 3 pages research project proposing a follow-up study, building on the observations presented during the 6 research seminars.

19	Regenerative medicine and Artificial Intelligence applications to biomedicine	Paola Bellosta, Martin Hanczyc, Alessandro Romanel, Luciano Conti (CIBIO) Antonella Motta (DII) Nicola Pugno (DICAM)	12	3	These mini-series of lectures aim at showing our view on the future developments in tissue engineering approaches with respect to the fast-moving disciplines that embrace artificial intelligence (AI) and biomedicine. From studies on three-dimensional polymers to the analysis of biological processes, we will talk about our experiments and or applications that study and synthesize "intelligent" materials identified using AI for application in regenerative medicine	The final evaluation will be based on a student group presentation.
----	--	--	----	---	--	---

	BIO - INDUSTRY CURRICULUM OPTIONAL COURSES							
	Course	Teacher	Hours	ECTS	Synopsis	Evaluation procedure		
1	Managing Pharma: from Idea to the Market Module 1: Managing Innovation in Pharma R&D	Dr. Lucio Da Ros (ViiV Healthcare Verona)	12+12	3+3	Purpose of the course is to provide the students the understanding of the multifaceted aspects of modern pharmaceutical industries, with emphasis on R&D Processes, organizational approaches, new product development strategies and trends. Students will benefit from a multidisciplinary learning path for expanding their career options within the biopharma industry. This track facilitates a thorough assessment of the GxP processes to emphasize the relevance of regulated activities as a cornerstone for transforming scientific breakthrough into innovative products. The course is based on two integrated modules : <u>Module 1:</u> • Overview of the drug discovery and development process • Pharma R&D business models & organizations • Improving R&D productivity • Evaluation of Innovation in response to unmet medical needs • Project Management in Drug Discovery and Development • Managing Pharma R&D portfolio			
	Module 2: From Clinical research into the market	Prof. Alessandro Provenzani (CIBIO)			 Module 2: Overview of the pharma company workflow between departments and manufacturing sites Roles of regulatory entities in the approval of a New Chemical Entity (NCE) The role of Quality Assurance Regulatory requirements: from the Investigational New Drug (IND) filing to the Common Technical Document (CTD) Monitoring clinical trials and CRO 			

2	Entrepreneurial Basic Skills for Biotech Module 1: From innovation to a business model	Dr. Alberto Nucciarelli (Dept. Economics and Management, Unitn)	12	3	Purpose of the course is to provide the students basic skills required for the path to entrepreneurship in the biotech sector. The course consists of three separate modules : This module defines the path from bio-tech innovation to business modelling in the Biotech industry. To do so, the module stems from the characteristics of innovation to discuss the necessary adherence of a business model to technology and its applications. With the aid of case studies, the module aims to help understand the relationship between innovation and business models choice. This module provides students with the basic knowledge on choosing the right business model for a specific technology and understand main costs and revenue structures supporting a sustainable business model.	
	Moldue2: Working on a business plan	Stefano Milani (Milani & Partners, Milano)	12	3	This module guides students to conceive a business plan. To do so, the module elaborates on the technique of creating a financially sound business plan. The module aims to guide students producing a working business plan to be used for funds seeking and finalising the transition of R&D outcomes to the market. This module provides students with the basic skills to structure a business plan, understand its founding features and present it to potential investors.	
3	Preclinical research and clinical development programs of drugs	I development (Medical School of 12 3 2. Methods in experimental drug research and clinical development		Group exam of n=4 students; students are requested to prepare a 20 min presentation followed by in-class discussion; upon request students can be examined individually.		

	 6. Basic concepts in pharmacogenetics and pharmacogenomics and its application to individualized drug therapies 7. The application of genomic sciences for improved and individualized drug therapies 8. Round table discussion with students – and 2 to 3 short presentations from students on selected topics of the course objective.
--	--

	OPTIONAL COURSES								
	Course Teacher Hours ECTS Synopsis		Evaluation procedure						
1	Academic writing for Science and Engineering level I	CLA –Centro Linguistico d'Ateneo	24	3	The course aims to extend students' knowledge of grammatical, lexical and textual features of written academic English in a scientific context and to provide tools to enable students to resolve language questions independently. An active approach is used, with students writing texts related to their academic work and then correcting them individually and as a group. Students should already have a B2 level of English. As the course deals with a restricted version of English, i.e. academic English, the course can also be successfully taken by students with a good B1 level of English and experience with academic English. Most of the course content is at C1 level.	Students are required to complete 4 short written texts, and to revise them to a publishable standard. Texts are evaluated at C1 level. A minimum of 60% is required on the total score for coursework. A minimum of 75% attendance is required.			
2	Presentations for Science and Engineering	CLA –Centro Linguistico d'Ateneo	16	2	The course aims to give both inexperienced presenters and those with some presenting experience an opportunity to develop their presentation skills and to have feedback on their use of English while presenting. An active approach is used, with students giving presentations on topics related to their research, and giving feedback to others on presentation skills. Students should already have a B2 level of English.	Students are required to complete at least one presentation that is generally comprehensible to the group.			

3	Academic writing for Science and Engineering level II	CLA –Centro Linguistico d'Ateneo	24	0	The course aims to revise and extend students' ability to use the language and writing skills introduced in the Academic Writing for the Sciences and Engineering course, and to provide support in improving a text they are currently writing, focusing on accuracy and clarity. Particular attention is given to the writing of a literature review. The course is open to students who have passed the Academic Writing for the Sciences and Engineering course (or an earlier version of the course, Technical English or Scientific English.	75% attendance is required. Students are required to bring, and then correct, a text or text extract and to participate actively in class sessions
4	Introduction to the CIBIO Core Facilities	Facility Managers (CIBIO)	6 each	1 (max 2 per cycle)	The courses will provide an introduction to techniques and instruments related to each Core Facility, together with examples of current applications. Part of the course will be dedicated to the discussion of specific topics and the possibility of a practical session will be evaluated on a case-by-case basis. Cibio Core Facilities are: • High Throughput Screening (HTS) • Next Generation Sequencing (NGS) • Cell Analysis and Separation • Advanced Imaging • Mass Spectrometry (MS)	
6	Make scientific figures better and faster	Facility Advenced Imaging Managers (CIBIO)	6	1	This course is designed as an introduction to the principles and techniques for visualizing data. The aim of the course is to show how to turn data into publication- ready figures at high quality resolution, using Open Source software. This includes changes to file type, resolution, color space, font, scale, line weights, and layout (to improve readability and professional appearance).	Attendance to all lessons and active participation

OTHER EDUCATIONAL ACTIVITIES									
Activity	Activity Description		ECTS/Period	Evaluation procedure	Mandatory/suggested activity				
15 Seminars	Attendance to 15 seminar per year	1st, 2nd, 3rd	1/year	Evaluation form	mandatory				
Summer School		anytime	2 total	Certificate provided by the organizing institution					

RESEARCH ACTIVITIES

Activity	Description	Year	ECTS/Period	Evaluation procedure	Mandatory/ suggested activity
General Laboratory Safety course	This course satisfies initial awareness training specified by the laboratory health and safety law and standard for personnel working in laboratories at the University of Trento. The course addresses the importance of health and safety, what accidents and work-related ill-health are, and why they occur. It will introduce to different risk range (chemical, physical, electrical, ionizing/radiation, biological and mechanical) of health and safety hazards and the harm they can do as well as their reduction/prevention. It explains the principles of Personal Protective Equipment (PPE) required for many work procedures in the laboratory environment, with emphasis o training in the maintenance, fit, and use of specific PPE for different work activities.	Anytime	1	Online test	
Journal Clubs		1st, 2nd, 3rd	1/year	Presentation	mandatory
1 progress report (WiP)		1st, 2nd, 3rd	3/year	Presentation	mandatory
Research period abroad			6/month	Written report	mandatory (at least 1 month)
Publication (1 st author)	International peer reviewed journals		3 each	Publication accepted	
Publication (co-author)	International peer reviewed journals		2 each	Publication accepted	
Abstract or presentation at congresses			1 each	Abstract or presentation submission	
Teaching support activity	At High Schools/University		1/assignment	Certified	
Event organization (e.g. PhD Colloquia)			1 each	Certified	suggested
Tutoring	Tutoring undergraduate students		1 each B.Sc. student 2 each M.Sc. student Max 3 credits total	Certified	

Each PhD student is required to obtain a total number of 60 ECTS per year (educational and research activities) for a total of 180 ECTS split as follows:

- 20 ECTS for educational activities:
 - o 7 credits for mandatory courses
 - o 3 credits from seminars
 - o for each Curriculum 6 credits for courses chosen among the dedicated courses list (Biomolecular or Bio-Industry)
 - $\circ~$ 4 credits for courses chosen among all the optional courses
- 160 ECTS for research activities

Regarding the Educational Credits:

- Credits for the institutional courses are specified in this Manifesto of Studies and have value in the year in which the course is attended.
- For the recognition of the credits obtained from courses organized by: a) other Doctorates, b) research Institutes, c) Universities (Master Degree) approval of the PhD Committee or the Executive Committee will be needed.
- It is mandatory to obtain at least 10 educational ECTS within the first year of the Doctorate.

Research ECTS comprise the mandatory research activities listed above plus the optional research activity and the regular lab activity.